Eğitim Öğretim İle İlgili Belgeler > Konu Anlatımlı Dersler > Matematik Dersi İle İlgili Konu Anlatımlar

KARMAŞIK SAYILAR, KOMPLEKS SAYILAR, KARMAŞIK SAYILARIN ÖZELLİKLERİ (MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR, ÖRNEKLER, ÇÖZÜMLÜ SORULAR)

 

A)Sanal Sayı Kavramı

 

Sıfırdan farklı her reel sayının karesi pozitiftir, negatif olamaz. Sıfırın karesi sıfırdır.

 

Biz sanal olarak karesi negatif olan bir sayı düşünelim.

 

Örneğin karesi -1 olan bir sayı alırsak bu sayı bir sanal sayıdır. Bu sayıyı 'i' harfi ile gösterirler.

 

O halde    dir.

Buna göre i sanal sayısı karesi -1 olan bir sayıdır.(  )

Bu gösterimde

 

Dikkat edilirse i'nin kuvvetleri daima {i,-1,-i,1}dir.

 

*değerinin hangi eleman olduğunu şöyle buluruz: i nin üssü olan n sayısını 4'e böleriz.

 

Eğer:

 

kalan 0 ise sonuç 1

 

kalan 1 ise sonuç i

 

kalan 2 ise sonuç -1

 

kalan 3 ise sonuç -i dir.

 

 

Sanal Sayılarla İşlemler

 

Toplama, çıkarma ve çarpmada (i)'yi bir harf gibi alır, sonuçta (i)'nin bir kuvveti varsa değerini yazarak işlemi yaparız.

 

Örneğin:

 

a)2i+3i-5i+6i=6i

 

b)3i-5i+i=-i

 

c)

 

 

Örnek=   olduğuna göre

 

Cevap= 127 yi 4 e bölersek 3, 445 i bölersek 1, 1997 yi bölersek 1 kalır yani:

 

 bulunur.

 

 

B)Karmaşık Sayılar

 

 olmak üzere a+bi=z sayısına karmaşık sayı denir.

 

ifadesinde katsayılar reel sayı, üsler doğal sayı olduğu zaman P(x) bir polinom olur.

 

Her P(x) polinomu için  alındığında P(i) nin daima a+bi olacağını görürüz.

 

 

Karmaşık sayılar kümesi C harfi ile gösterilir.

 

 

Bir karmaşık sayı iki kısımdan oluşur. Bunlar reel kısım ve sanal kısımlardır.

 

z=a+bi karmaşık sayısında (bilgi yelpazesi.net) a reel kısım, b ise sanal kısımdır.

 

Reel kısım Re(z)=a, sanal kısım İm(z)=b biçiminde yazılarak gösterilir.

 

 

Karmaşık Sayıların Eşitliği

 

yani a+bi=x+yi ise a=x,b=y dir.

 

Eşit karmaşık sayılarda reel kısımlar bir birine, sanal kısımlar birbirine eşittir.

 

 

Karmaşık Sayının Eşleniği

 

Bir karmaşık sayının eşleniği, sanal kısmın işareti değiştirilerek elde edilen karmaşık sayıdır. Eşlenik sayı, esas karmaşık sayının üstüne bir çizgi çekilerek belirlenir.

z=a+bi ise eşleniği   dir.

 

3+2i nin eşleniği 3-2i dir.

 

 

KARMAŞIK SAYILARDA İŞLEMLER

 

Karmaşık sayılarla, toplama çıkarma ve çarpma işlemleri polinomlarda olduğu gibi yapılır.

 

Toplama İşlemi

 

Toplamada, reel kısımlar toplanıp reel kısım; sanal kısımlar toplanıp sanal kısım bulunur.

 

Karmaşık sayılarda toplama işleminin etkisiz elemanı reel ve sanal kısımları 0(sıfır) olan karmaşık sayıdır.

 

Bir z karmaşık sayısının toplamaya göre tersi -z dir.

 

Örnek=

 

z'=3-2i , z^=5+7i , z^^=-6+3i olduğuna göre z'+z^+z^^ toplamı nedir?

 

Cevap=

(3-2i)+(5+7i)+(-6+3i)ise

3+5-6=2  ve -2i+7i+3i=8i dir.

=2+8i

 

 

Çıkarma İşlemi

 

İki karmaşık sayının farkı, için çıkan sayının toplamaya göre tersi ile toplamı yapılır, yani çıkan sayının işaretleri değiştirilerek toplama yapılır.

 

Örnek=

 

z=5+2i ve z'=4-3i ise z-z'=?

 

Cevap=

 

z-z'=(5+2i)-(4-3i)

=5+2i-4+3i

=1+5i  bulunur.

 

 

Çarpma İşlemi

 

Polinomlarda olduğu gibi yapılır. i nin kuvvetleri i türünden hesaplanarak çarpma işlemi yapılır.

 

Örnek=

z=3+4i ve z'=2-3i ise

z.z'=(3+4i).(2-3i)

=6-9i+8i+12

=6-9i+8i+12

=18-i bulunur.

 

 

Bölme İşlemi

 

Pay ve payda, paydanın (bilgi yelpazesi.net) eşleniği ile çarpılarak yapılır.

 

Örnek=

 

olduğuna göre 3+2i işleminin sonucu nedir?

 

Cevap=

3+2i = (3+2i).(5+3i) = 15+9i+10i+6

5-3i   (5-3i).(5+3i)         25-9i

 

=15+9i10i-6 = 9+19i  bulunur.

25+9        34

 

 

Eşlenik İfadelerde Özellikler

 

 

 

MUTLAK DEĞER

 

 

KARMAŞIK DÜZLEM

 

z=a+bi karmaşık sayısında a ve b gerçek sayılardır. Karmaşık sayılarda daima Reel kısım önce, sanal kısım sonra yazılır.

 

Bu tür yazma biçimi, karmaşık sayıları reel sayı ikilileri ile gösterme kolaylığı sağlar.

 

z=a+bi karmaşık sayısı z=(a,b) şeklinde yazılabilir.

 

Örneğin

 

z=(3,-2) karmaşık sayısı z=3-2i dir.

 

Bunu analitik düzlemde düşünebiliriz. Bu durumda ilk sayı reel kısmı, ikinci sayı sanal kısım olarak alınınca bir nokta belirler.

 

Bu gösterimde yatay eksen reel ekseni, düşey eksen de sanal ekseni belirtir.

 

 

Karmaşık sayının karmaşık düzlemde nokta olarak gösterilmesine, karmaşık sayının karmaşık düzlemdeki görüntüsü denir.

 

Bir karmaşık düzlemde her nokta bir karmaşık sayı, her karmaşık sayı da bir noktayı gösterir. Yani karmaşık düzlemdeki noktalar ile bütün karmaşık sayılar bire bir eşlenebilirler.

 

Aşağıda bazı karmaşık sayıların (bilgi yelpazesi.net) karmaşık düzlemde görüntülerini görebiliriz:

 

z =  3-6i             z^' = 5+i

 

z'  = -4+6i            z'^ = 3i

 

z'' = -4-5i            z^^ = 1

 

 

Karmaşık düzlemde eşlenik sayı: Sayının görüntüsünün X eksenine göre simetriği o sayının eşleniğidir. Orijine göre simetriği ise sayının negatifidir.

 

 

 

KARMAŞIK DÜZLEMDE MUTLAK DEĞER

 

Karmaşık düzlemde bir sayının orijine uzaklığına, o noktaya karşılık gelen karmaşık sayının mutlak değeri denir.

  dir.

 

 

[z]=5 eşitliği z noktalarının orjine olan uzaklığını sabit ve 5 birim olduğunu gösterir. O halde bu z noktaları, merkezi orijin ve yarıçapı 5 olan bir çember üzerindedir.

 

 

 

Tanım olarak   [z]=r eşitliği merkezi orijinde ve yarıçapı r olan bir çemberin karmaşık düzlemdeki denklemini gösterir.

 

 

ise   nin anlamı merkezi orijinde ve yarıçapı r olan bir çember ve bu çemberin iç bölgesini gösterir.

 

 ise çemberin sınırladığı iç bölgeyi gösterir. Çember dahil olmadığı için nokta nokta çizilir.

 

 

  ise merkezi orijinde ve yarıçapı r olan çemberin dış bölgesini gösterir.

 

 

 

  ise merkezi orijinde ve yarıçapı r olan çember ve içi hariç dış bölgenin tümünü gösterir.

 

 

Örnek=

 

z=x+yi ve z'=-1+4i ise [z]=[z'] olduğuna göre z noktalarının geometrik yeri nedir?

a)Merkezi orijinde yarıçapı 5 olan çember.

b)Merkezi orijinde yarıçapı 3 olan çember.

c)Merkezi orijinde yarıçapı 4 olan çember.

d)(-3,5)

e)0

 

Cevap=

[z]=[-3+4i] ise   bu da  [z]= 5 eşitliğidir. Yani (bilgi yelpazesi.net) merkezi orijinde yarıçapı 5 olan çemberdir.

Yanıt A şıkkı.

 

Örnek=

  eşitsizliğini sağlayan noktalar karmaşık düzlemde bir bölge oluşturur. Bu bölgenin alanı kaç br karedir?

 

Cevap

 

 

Bu bölge merkezleri orijinde ve yarıçapları 2 ve 4 birim olan iki çemberin sınırladığı bölgedir, alanı:

 

 

BİR KARMAŞIK SAYININ SANAL SAYI İLE ÇARPIMI

 

ve z=x+yi olsun.

 

i.z=i(x+yi) bu da iz=-y+xi olur.

 

iz=-y+xi olduğu için (-y,x) olur ve z noktası etrafında pozitif yönde 90 derece dönünce iz noktasının bulunacağı görülür.

 

Örnek=

a=(5,2) noktası orijin etrafında negatif yönde 90 derece döndürülürse hangi nokta bulunur?

 

Cevap=

Negatif yönde 90 derece döndürmek için -i ile çarpılır.

(5,2)=5+2i dir.

-i(5+2i)=-5i-2  = 2-5i

O halde A'=(2,-5) bulunur.

 

 

KARMAŞIK DÜZLEMDE İKİ NOKTA ARASI UZAKLIĞIN BULUNMASI

 

Karmaşık düzlemde iki nokta arası uzaklığın bunların farkının mutlak değeridir.

 

Sabit bir noktadan eşit uzaklıkta bulunan noktaların geometrik yeri düzlemde bir çemberdir.

 

Buna göre merkezi z'=a+bi ve yarıçapı r olan bir çemberin karmaşık düzlemdeki denklemi [z-z']=r   biçiminde olur.

 

A={z:[z+2i] 2 } gibi ifadelerde A=(0,-2) şeklindedir ve yarıçapı 2 dir.

 

B={z:[z+2] 3 } ise B=(-2,0) şeklindedir ve yarıçapı 3 dür.

 

 

Örnek=

z=4-7i ve z'=1-3i sayılarının karmaşık düzlemdeki görüntüleri arası uzaklık nedir?

 

Cevap=

d=[z-z']=[(4-7i)-(1-3i)]

=[(4-1)+(-7+3)i]=[3-4i]

=  = 5 birim

 

Örneğin\Merkezi z'=2+3i ve yarıçapı 4 olan bir çember denklemi:

[z-(2+3i)]=4  biçimindedir.

 

 

KARMAŞIK SAYILARIN KUTUPSAL KORDİNATLARLA GÖSTERİMİ

 

z=a+bi karmaşık sayısının karmaşık düzlemde orijine birleştiren doğru parçasının [Oz]=r=[z] olur. Oz doğrusunun reel eksenle yaptığı yönlü açı da Q olsun. Karmaşık düzlemde bir r uzunluğu ve Q açısı verildiğinde z noktasının yeri bulunur.

 

Karşıt olarak   bir z noktası verildiğinde r sayısı ve en az bir Q açısı bulunabilir. Q açısı   açılarından biri olabilir. Yani bu açılardan her biri z nin üzerinde bulunduğu ışını belirtir. Bu ışın üzerinde r kadar alınarak z noktası bulunmuş olur.

 

z=0 sayısı için Q belirsizdir. Bundan (bilgi yelpazesi.net) dolayı r=0 almakla karmaşık düzlemde z=0(orijin) notasını göstermiş olur.

 

 

ARGÜMENT

 

Bir karmaşık sayı için reel eksenin pozitif yönü ile yaptığı Q açısına  o karmaşık sayının argümenti denir ve

Arg z=Q biçiminde gösterilir.0  Q <360 arasında alınırsa buna z karmaşık sayısının esas argümenti denir ve Arg z=Q ile gösterilir.

Eğer z nin argümentini genel argüment

  

 ile gösterilir.

 

Esas argümente kısaca argüment denir.

 

 

BİR KARMAŞIK SAYININ KUTUPSAL KORDİNATLARDA YAZILMASI

 

z karmaşık sayısının kutupsal koordinatlarda yazılışı z=r(cosQ+i sinQ) şeklindedir.

r ise    dir.

 

z=r(cosQ+i sinQ) da aradaki işaret daima + olacağına göre bu yazılışı cos den (C), sin den (S) harfi alınarak kısaca r(cosQ+i sinQ)=r cisQ biçiminde yazılır.

 

 

KUTUPSAL KORDİNATLARDA İŞLEMLER

 

Çarpma İşlemi

 

z=r(cosQ+i sinQ)

z'=r'(cos@+i sin@) olduğuna göre

 

z.z'=r.r'(cosQ+i sinQ).(cos@+i sin@)  buradan da

z.z'=r.r'(cos(Q+@)+i sin(Q+@)) bulunur.

 

İki karmaşık sayının çarpımında mutlak değerler çarpılır, argümentler toplanır.

 

 

Bölme İşlemi

 

z=r(cosQ+i sinQ)

z'=r'(cos@+i sin@)  ise

 

z = r =(cos(Q-@)+i sin(Q-@)) olarak bulunur.

z'  r'

 

[z] =r  ve Arg(z)=Q

[z']=r' ve Arg(z)=@ olduğuna göre

 

z = r  Arg(z ) = Q-@  olur.

z'  r'    (z')

 

 

KARE VE KAREKÖK

 

z nin kare ve kareköklerini bulmak için De Moivre formülü kullanılır.

 

bulunur.

n=p   içinde geçerlidir.

 q

 

Dikkat edilmesi gereken nokta n=p  olduğu zaman argüment, genel

 q

argüment alınmalıdır. Çünkü k değeri değiştikçe başka sayılar da bulunur.

 

“MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“KONU ANLATIMLI DERSLER " SAYFASINA GERİ DÖNMEK İÇİN
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ TEST SORULARI SORU BANKASI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

“MATEMATİK DERSİ İLE İLGİLİ YAZILI SORULARI "
SAYFASINA GEÇMEK İSTERSENİZ
>>>TIKLAYIN<<<

"
EĞİTİM ÖĞRETİM İLE İLGİLİ BELGELER
” SAYFASINI GÖRMEK İSTERSENİZ
>>>TIKLAYIN<<<

Yorumlar

.

2. **Yorum**
->Yorumu: Kendi öğretmenimin anlattığından daha fazla anldım .Elinize sağlık harika olmuş.
->Yazan: mira.

>Yazan: MeMeT Ökten
>Yorum:
KONU GERCEKTEN COK DETAYLI ANLATILMIS .

>>>YORUM YAZ<<<

Adınız:
Yorumunuz:


 




EĞİTİM ÖĞRETİM KONULARI Atasözleri Hikayeleri Özellikleri Belirli Gün ve Haftalar Çocuk Şarkıları - Şarkı Sözleri Hikayelerden Seçmeler İlginç Bilgiler Eğlenceli Bilgiler İllerimiz Ve İlçelerimiz Türkiye Kitap Özetleri Roman Özetleri Konu Anlatımlı Dersler Maniler Manilerden Seçmeler Masal Masallardan Seçmeler Meslek Tanıtımları Meslekler Rehberlik Köşesi Soru Bankası, Test Soruları Şiirler Seçme Güzel Şiirler Tekerleme Tekerlemeler Tiyatro Oyunları, Skeç, Piyes Türküler Türkü Sözleri Yazar Ve Şairlerin Hayatı Yazılı Soruları Arşivi ***Devamını Göster*** KONU ANLATIMLI DERSLER Beden Eğitimi Dersi Konu Anlatımı Bilgi Ve İletişim Teknolojileri Dersi Konu Anlatımı Biyoloji Dersi Konu Anlatımı Coğrafya Dersi Konu Anlatımı Din Kültürü Ve Ahlak Bilgisi Dersi Konu Anlatımı Edebiyat Dersi Konu Anlatımı Eğitim Bilimleri Dersi Konu Anlatımı Felsefe Dersi Konu Anlatımı Fen Bilimleri Dersi Konu Anlatımı Gelişim Ve Öğrenme Dersi Konu Anlatımı Hazreti Muhammed'in Hayatı Dersi Konu Anlatımı İngilizce Dersi Konu Anlatımı Matematik Dersi Konu Anlatımı Muhasebe Dersi Konu Anlatımı Tarih Dersi Konu Anlatımı Türkçe Dersi Konu Anlatımı Uluslar Arası İlişkiler Dersi Konu Anlatımı Vatandaşlık Anayasa İnsan Hakları Dersi Konu Anlatımı ***Devamını Göster*** YAZILI SORULARI YAZILILAR Biyoloji Yazılı Soruları Coğrafya Yazılı Soruları Dil Ve Anlatım Yazılı Soruları Din Kültürü Yazılı Soruları Edebiyat Yazılı Soruları Fen Bilimleri Yazılı Soruları Fizik Yazılı Soruları İngilizce Yazılı Soruları Kimya Yazılı Soruları İnkılap Tarihi Yazılı Soruları Matematik Yazılı Soruları Sosyal Bilgiler Yazılı Soruları Trafik Güvenliği Trafik Ve İlk Yardım Yazılı Soruları Türkçe Yazılı Soruları Vatandaşlık Ve Demokrasi Eğitimi Yazılı Soruları ***Devamını Göster*** SORU BANKASI TEST SORULARI Coğrafya Test Soruları Soru Bankası Din Kültürü Test Soruları Soru Bankası Edebiyat Test Soruları Soru Bankası Fen Bilimleri Test Soruları Soru Bankası İngilizce Test Soruları Soru Bankası İnkılap Tarihi Test Soruları Soru Bankası Matematik Test Soruları Soru Bankası Osmanlı Tarihi Test Soruları Soru Bankası Sosyal Bilgiler Test Soruları Soru Bankası Tarih Test Soruları Soru Bankası TC İnkılap Tarihi Test Soruları Soru Bankası Türkçe Test Soruları Soru Bankası Vatandaşlık Anayasa İnsan Hakları Test Soruları Soru Bankası ***Devamını Göster*** REHBERLİK KÖŞESİ Ders Çalışma Ödev Yapma İş Hayatı Başarısını Arttırma Kişisel Bedensel Gelişim Meslek Tanıtımları Okul Başarısını Arttırma Okuma Alışkanlığı Kazandırma Öğretmenlik Mesleği Sınavlara Hazırlanma Sinirini Engelle ***Devamını Göster*** HAYATIN İÇİNDEN BİLGİLER Cep Telefonu Mesajları İsimler Sözlüğü Pratik Bilgiler Yazıklar Olsun Zararları Sakıncaları ***Devamını Göster*** BİLGİSAYAR OYUNLARI Akıl Zeka Eğitici Oyunlar Araba Yarışı Oyunları Ateş Etme Hedef Vurma Oyunları Beceri Yetenek Oyunları Birleştirme Patlatma Oyunları Boyama Oyunları Dövüş Oyunları Futbol Oyunları Giysi Giydirme Oyunları Komik Eğlenceli Oyunlar Macera Oyunları Mario Oyunları Motosiklet Oyunları Savaş Oyunları Tasarlama Oyunları Yemek Yapma Oyunları ***Devamını Göster*** YEMEK TARİFLERİ MUTFAK Aperatifler Atıştırmalıklar Balık Yemekleri Tarifleri Tarifleri Börek Çörek Tarifleri Çorba Tarifleri Tarifleri Dolma Sarma Tarifleri Diyet Yemekleri Tarifleri Et Yemekleri Kebap Köfte Tarifleri Kek Tarifleri Komposto Tarifleri Kurabiye Tarifleri Pasta Tarifleri Pilav Tarifleri Reçel Tarifleri Salata Garnitür Tarifleri Sebze Yemeği Tarifleri Tatlı Turta Tart Tarifleri Tavuk Yemekleri Tarifleri ***Devamını Göster*** SAĞLIKLI YAŞAM REHBERİ Hastalıklar Çeşitleri Özellikleri Sağlık İçin Minik Notlar Sigaranın Zararları Sigarayı Bırakma Yolları Şifalı Bitkiler Listesi Şifalı Bitki Karışımları ***Devamını Göster***