eğitim öğretim ile ilgili belgeler > konu anlatımlı dersler > matematik dersi ile ilgili konu anlatımlar

KÖKLÜ SAYILAR, KÖKLÜ İFADELER, KÖKLÜ SAYILARIN ÖZELLİKLERİ (1) İLE İLGİLİ KONU ANLATIMLAR (MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR, ÖRNEKLER, ÇÖZÜMLÜ SORULAR)

n, 1 den büyük bir sayma sayısı olmak üzere,

xn = a denklemini sağlayan x sayısına a nın n inci dereceden kökü denir.

 

Üslü ifadelerde negatif veya pozitif reel sayıların tam sayı olan kuvvetlerini tanımlamıştık. Bir üslü ifadenin değerini bulmayı biliyoruz.

 

Örneğin:

(-2)2=(-2).(-2)=4,           (2)=2.2=4 tür.

 

A bir reel sayı ve m, 1’den büyük bir tamsayı mÖa sayısına a sayısının m inci kuvvetten kökü denir.

 

Burada karesi 4 olan iki reel sayı vardır. Bunlardan negatif olanı (-2), pozitif olanı da (+2) dir. Bunun gibi karesi 9 olan sayılar (-3) ve (+3) tür. Fakat karesi -4 ve -3 olan reel sayı yoktur. Genelleyecek olursak; "xÎR+ için karesi x olan biri negatif diğeri pozitif iki reel sayı vardır. Değeri ve üssü verilen üslü ifadelerin tabanını bulma işlemine kök alma işlemi denir.

 

TANIM:karesi aÎR+ e eşit olan iki sayıdan negatif olanına a nın negatif karekökü, pozitif olanına a nın pozitif karekökü denir. Negatif karekök “-Öa”; pozitif karekök “Öa” ile gösterilir. Yani(Öa)2=(-Öa)2=a dır.

Örneğin; x2=16 nın pozitif karekökü x=Ö16=4, negatif karekökü x=-Ö16=-4

(Öa)2=Öa2 ifadesi bazen “a” ya eşit değildir. Örneğin;

Öa2 ifadesi daima pozitiftir. Öa2³0 olur.

Ö4=2 nin doğru olduğuna, Ö4=-2 nin yanlış olduğuna dikkat ediniz.

B. KÖKLÜ İFADELERİN ÖZELİKLERİ

1) n tek ise, daima reeldir.

2) n çift ve a < 0 ise, reel sayı belirtmez.

3) a  0 ise, daima reeldir.

4) a  0 ise,

5) n tek ise,

6) n çift ise,

7)

8) n çift ve b ile c aynı işaretli olmak üzere,

9) n tek ise,

 

10) a, pozitif reel (gerçel) sayı olmak üzere,

 

11) k pozitif tam sayı ve a pozitif gerçel sayı olmak üzere,

12) (a  0 ve b  0)  ise,

 

Teorem:bir reel sayının karesinin karekökü o reel sayının mutlak değerine eşittir.

"xÎR için Öx2=½x½ tir.

 

İspat;

1.      x³0 için ½x½ve Öx2 =x tir. o halde, Öx2 =½x½olur.

2.      x<0 için ½x½=-x ve Öx2 =-x tir. (-x>0) o halde, Öx2 =½x½olur.

 

Örnek: x<2 ise  Öx2 -4x+4 ifadesi neye eşittir?

Çözüm: Öx2 -4x+4 = Ö(x-2)2 = ½x-2½(Öx2 =½x½)

X<2 ise x-2<0 olur. Bu durumda, ½x-2½=-(x-2)=-x+2 bulunur.

 

Örnek: x<0<y ise Öx2+Öy2-Ö(x-y)2 işleminin sonucunu bulunuz.

Çözüm: Öx2 = ½x½, Öy2 =½y½ ve Ö(x-y)2 =½x-y½ dir.

X<0 Þ½x½=-x

Y<0 Þ½y½=y

X<y Þ x-y<0 Þ ½x-y½=-(x-y)=-x+y dir.

Öyleyse, Öx2+Öy2-Ö(x-y)2 =½x½+½y½-½x-y½=-x+y+x-y=0 bulunur.

 

Örnek: 3<x<4 ise Öx2-8x+16 +Öx2-6x+9 -½3-x½işleminin sonucunu bulunuz.

Çözüm: Öx2-8x+16 =Ö(x-4)2 =½x-4½, Öx2-6x+9 =Ö(x-3)2 =½x-3½ tür.

X<4 Þ x-4<0 olup ½x-4½=-x+4 ve

x>3 Þ x-3>0 olup ½x-3½=x-3 olur.

x>3 Þ ½3-x½=-3+x tir.

Öx2-8x+16 +Öx2-6x+9 -½3-x½=½x-4½+½x-3½-½3-x½=-x+4+x-3-(-3+x)

=1+3-x=4-x bulunur.

 

 

KAREKÖKLÜ İFADELERDE TOPLAMA VE ÇIKARMA İŞLEMLERİ

 

Kareköklü ifadeleri toplamak veya çıkarmak için kök içindeki terimler benzer olmalıdır. Benzer olan terimlerin kat sayıların toplamı veya farkı, o terimlere kat sayı olarak yazılır.

Kök dereceleri birbirine eşit ve kök içindeki sayılar da birbirine eşit olan ifadelerin kat sayıları toplanır ya da çıkarılır.

Bulunan sonuç köklü ifadenin kat sayısı olur.

Örnek:

 

aÖb -cÖb +dÖb =Öb(a-c+d) olur.

 

Örnekler:

 

1.      3Ö3-4Ö3+7Ö3=(3-4+7).Ö3

2.      Ö75 -2Ö48 -3Ö27 =2Ö25.3 -2Ö16.3 -3Ö9.3 =2.5Ö3 -2.4Ö3 -3.3Ö3

=10Ö3 -8Ö3 -9Ö3 =(10-8-9)Ö3 =-7Ö3

3.      Ö5/3+2Ö5-3Ö5/2 =(1/3+2-3/2)Ö5 =(2+12-9/6)Ö5 =5/6Ö5

 

Örnek:

işleminin sonucu kaçtır?

 

 

EŞLENİK İFADELERİN ÇARPIMI

1) Kök dereceleri eşit ise kök içleri çarpılır.

 

Örnekler

 

2) Kök içleri eşit ise önce uslu sayıya çevrilir.

 

n ve m, 1 den büyük tek sayı ya da a ve b negatif olmamak üzere, bilgiyelpazesi.com

 

a,bÎR+ için

1. Öa nın eşleniği Öa dır.

2. Öa +Öb nin eşleniği Öa-Öb dir.

 

Çarpımları rasyonel olan iki irrasyonel ifadeden her birine diğerinin eşleniği denir. Eşlenik iki ifadenin çarpımı, birinci terimin karesinden ikinci terimin karesinin farkına eşittir. Çarpma işleminin toplama işlemi üzerine dağılma özelliği kullanılırsa,

 

(Öa+Öb)(Öa-Öb)=Öa(Öa-Öb)+Öb(Öa-Öb)=a-Öab +Öab –b=a-b olur.

 

Örnek:

 

1.      (Ö5 -2Ö3)(Ö5 +2Ö3)= Ö5(Ö5 +2Ö3)-2Ö3(Ö5 +2Ö3)=5+2Ö15 -2Ö15 -4.3=-7

2.      (4+2Ö7)(4-2Ö7)=42-(2Ö7)2=16-28=-12

3.      (x+Ö5)(x-Ö5)=(x2)-( Ö5)2=x2-5 olur.

 

PAYDAYI RASYONEL YAPMA

 

Paydası rasyonel olmayan bir köklü ifadenin paydasını rasyonel yapmak için paydanın eşleniği ile pay ve paydayı çarparız.

 

Örnek:

1.      3/Ö3=3. Ö3/Ö3. Ö3=3Ö3/Ö32=Ö3

2.      1/Ö5-Ö3=1.( Ö5+Ö3)/ (Ö5-Ö3)( Ö5+Ö3)= Ö5+Ö3/(Ö5)2-(Ö3)2=Ö5+Ö3/5-3=Ö5+Ö3/2

3.      7/2Ö2-1=7(2Ö2+1)/(2Ö2-1)(2Ö2+1)=7(2Ö2+1/(2Ö2)2-(1)2=7(2Ö2+1)/8-1=7(2Ö2+1)/7

=2Ö2+1

 

 

 

KAREKÖKLÜ BİR İFADENİN SADELEŞTİRİLMESİ

 

Örnek: (Öa3)6.( Öa-3)4 ifadesini sadeleştiriniz.

Çözüm: a-3=1/a3 yazılabileceğini biliyoruz.(x-n=1/xn kuralına göre)

(Öa3)6.( Ö1/Öa3)4=Öa18. Ö1/Öa12=Öa18.1/a12=Öa6=Ö(a3)2 =½a3½ bulunur.

 

Örnek: Öab-3c-2 . Öab5c3 ifadesini sadeleştiriniz.

Çözüm: Öab-3c-2 . Öab5c3 =Öa2b5c3/Öb3c2 =Öa2b2c =½ab½.Öc bulunur.

 

KAREKÖKLÜ İKİ TERİMİN ÇARPIMI

 

a ³0 ve b>0 olmak üzere a,b Î R için Öa.Öb=Öa.b dir.

Kareköklü iki terimin çarpımı, bu terimlerin çarpımının kareköküne eşittir.

 

Örnek:

1.      Ö3. Ö5 =Ö3.5 =Ö15

2.      2Ö3. 3Ö2 =(2.3). Ö3.2 =6Ö6

3.      Ö3. Ö6. Ö2 =Ö3.6.2 =Ö36 =6

 

KAREKÖKLÜ İKİ TERİMİN BÖLÜMÜ

 

a ³0 ve b>0 olmak üzere a,b Î R için Öa/Öb =ÖA/B dir.

Kareköklü iki terimin bölümü, bu terimlerin bölümünün kareköküne eşittir.

 

Örnek:

1.      Ö60 /Ö15 =Ö60/15 =Ö4 =2

2.      Öx7/Öx5=Öx7/x5 =Öx2 =½x½

3.      Ö21/Ö7 =Ö21/7=Ö3

 

KAREKÖKLÜ BİR TERİMİN n. KUVVETİ

 

Kareköklü bir terimin “n.” Kuvveti bulunurken, verilen ifadenin karekökü alınarak terimin “n.” Kuvveti bulunur ve ele edilen terimin karekökü alınır.

xÎR+ ve n ÎZ+ olmak üzere, (Öx)n=Öxn ir.

 

İspat: xÎR+, nÎZ+ için Öx in “n.” Kuvveti,

(Öx)n=Öx. Öx. Öx…Öx=Öx.x.x…x =Öxn olur.

 

Örnek:

1.      (Ö5)4=Ö54=Ö(52)2=52=25

2.      (Ö3)3.( Ö6)5=Ö33 . Ö65 =Ö33(2.3)5 . Ö33.25.35 =Ö38.25

=Ö(34)2.(22)2.2=34.22. Ö2 =324Ö2

3.      (Ö1/2)-4=Ö1/2-4 =Ö24 =Ö(22)2 =22 =4

 

REEL SAYILARIN RASYONEL KUVVETİ

 

Tanım: a³0 reel sayısı verilsin. n ÎZ+ için xn=a olacak şekilde bir xÎR+ sayısı varır.

Bu sayıyı a nın “n.” Kuvvetten kökü denir ve xn =a Û x=nÖa biçimine gösterilir.

 

x2=m eşitliğini gerçekleyen x=Öm değerine, karekök m,

x3=m eşitliğini gerçekleyen x=3Öm değerine, küpkök m,

x4=m eşitliğini gerçekleyen x=4Öm değerine, 4. dereceden kök m denir.

 

Şimdide nÖam biçimindeki bir ifadeyi üslü şekle yazalım. m=k.n alalım:

 

nÖam =nÖan.k =nÖ(ak)n =ak dır.

 

m=k.n Þk=m/n dir. ak da k yerine m/n yazalım. ak =am/n bulunur. O halde, nÖam=am/n dir.

 

örnek:

1.      Öx =x1/2

2.      3Öx2 =x2/3

3.      4Ö(x+y)3 =(x+y)3/4

 

köklü bir terimi üslü biçimde yazarken, terimin üssü pay, kökün derecesi payda alınarak elde edilen rasyonel sayı verilen terime üs olarak yazılır.

 

xn=a denkleminde n tek doğal sayı ise çözüm kümesi: x=nÖa dir.

xn=a denkleminde n çift doğal sayı ise çözüm kümesi: x=±nÖa dır.

 

öyleyse, x=nÖa ifaesi,

 

1.      n tek doğal sayı ve x reel sayıdır.

2.      n çift doğal sayı ve a³0 ise x reel sayıdır.

3.      n çift doğal sayı ve a<0 ise x reel sayı değildir.

 

7Ö-128, 3Ö-27, 5Ö-1 sayıları reel sayıdır.

Ö25, 4Ö16, 4Ö8 sayıları reel sayılardır.

Ö-1, Ö-4, Ö-9 sayıları reel sayı değildir.

 

KÖKLÜ BİR TERİMİN KUVVETİ

 

nÖa gibi köklü bir terimin “m.” Kuvveti, (nÖa)m = nÖa.nÖa.nÖa…nÖa = nÖa.a.a…a=nÖam olur.

Öyleyse, (nÖa)m = nÖam dir.

 

Örnek:

1.      (3Öx.y)2 =3Ö(x.y)2 =3Öx2.y2

2.      (3Öa)4=3Öa4 =3Öa3.a=a3Öa (nÖan.b=anÖb dir. )

3.      (5Ö4)3 =5Ö43=5Ö(22)3 =5Ö26=5Ö25.2 =25Ö2

 

KÖKLÜ BİR TERİMİN KÖKÜ

 

Bir terimin “m.” Kuvvetten kökünün tekrar “n.” Kuvvetten kökü, bu terimin (m.n) inci kuvvetten köküne eşittir. nÖx in tekrar “m.” Kuvvetten kökü: mÖnÖx =m.nÖx dir. Bu eşitliğin doğruluğunu gösterelim:

 

mÖnÖx=(nÖx)1/m =nÖx1/m =(x1/m)1/n =x1/m.n =m.nÖx olur.

 

Öyleyse, mÖnÖx =m.nÖx tir.

 

Örnekler:

1.      3Ö4ÖÖa3 =3Ö4.2Öa3 =3Ö8Öa3 =24Öa3 =8Öa

2.      4Ö5Ö53Ö52 =4.2.3Ö(52)3.53.52 =24Ö56.53.52 =24Ö511 bulunur.

 

KÖKLÜ İFADELERİN ÇARPILMASI

 

Kök kuvvetleri aynı olan ifadelerin çarpımı, bu ifadelerin çarpımının aynı kuvvetten köküne eşittir.

 

Teorem: a,b ÎR+ ve n ÎN+ ise nÖa.nÖb =nÖa.b dir.

İspat: nÖa.nÖb =nÖa.b dir. eşleniğinin her iki yanının n. Kuvvetini alalım.

(nÖa.nÖb)n =(nÖa.b)n Þ(nÖa)n.(nÖb)n =a.b ve (nÖa.b)n =nÖan.bn =a.b dir.

 

Örnek: 3Ö2a. 3Ö4a2 işleminin sonucunu bulunuz.

Çözüm: 3Ö2a.3Ö4a2 =3Ö2a.4a2 =3Ö8a3 =3Ö23a3 =3Ö(2a)3=2a dır.

 

Teorem: x,y ÎR+, m,n,k ÎZ+ olmak üzere  1. nÖxm =n.kÖxm.k    2. nÖxm=n/kÖxm/k

3.mÖx.nÖy=m.nÖxn.m.nÖym=m.nÖxn.ym   4. mÖx/nÖy=m.nÖxn/m.nÖym=m.nÖxn/ym dir.

 

kök kuvvetleri farklı olan köklü ifadeleri çarpmak için önce kök kuvvetleri eşitlenir sonra çarpma işlemi yapılır.

 

KÖKLÜ İFADELERİN BÖLÜNMESİ

 

Kök kuvvetleri aynı olan köklü iki ifadenin bölümü, bu ifadenin bölümlerinin aynı kuvvetten köküne eşittir.

 

Teorem: a,b ÎR+ ve nÎN+ ise nÖa/nÖb =nÖa/b ir.

İspat: her iki tarafın  n. Kuvvetten kökünü alalım:

(nÖa/nÖb)n =(nÖa/b)n Þ (nÖa)n/(nÖa)n  =a/b Þa/b=a/b dir.

 

Örnek:

1.      Ö18a5/Ö2a3 =Ö18a5/2a3 =Ö9a2 =3a dır.

2.      3Ö54a4b5/3Ö2ab2 =3Ö54a4b5/2ab2 =3Ö27a3b3 =3ab dir.

 

 

Karekök İçindeki İfadenin Kök Dışına Çıkarılması:

 

Karekök içinde çarpım veya bölüm durumunda verilen ifadeler, 2 veya 2’nin katı kuvvetinde yazılabilirse karekök dışında çıkarılabilirler.

Öa2m = am

Öa2 . b2  = a . b

 

Örnek: Ö4 = Ö2 = 22/2 = 2

 

 

Örnek:

Aşağıdaki irrasyonel sayılardan hangisinin yaklaşık değeri bilinirse  sayısının yaklaşık değeri bulunabilir?

 

 

 

Ondalık Sayıların Karekökü:

 

Ondalık sayıların virgülden sonraki basamak sayıları çift ise tam karekökleri olabilir.

 

Örnek:  Ö0,04 sayısının eşitini bulalım.

 

Çözüm: Ö0,04 = Ö4  = 2 = 0,2

100  10

 

Karekök dışındaki çarpanın kök içine alınması:

 

Kareköklü sayının katsayısının kök içine almak için katsayısının karesini kök içindeki sayı ile çarpar, kök içine yazarız.

aÖb = Öa2 .b

 

Örnek: 2Ö3 = Ö22 . 3 = Ö4 . 3 = Ö12

 

Kareköklü sayının n. kuvveti kök içindeki sayının n. kuvvetidir.

(Öa)n = Öan

 

Örnek: (Ö7)2 = Ö72 = 7

 

Sonsuz Kökler, Sonsuza Giden Köklü İfadeler:

 

 

 

 

Yukarıdaki son iki özelikte a, ardışık iki pozitif tam sayının çarpımı ise, v. nin cevabı bu sayıların büyüğü, vı. nın cevabı bu sayıların küçüğüdür.

 

 

KÖKLÜ İFADELERDE SIRALAMA

Kök dereceleri eşit olan (ya da eşitlenen) pozitif sayılarda, kök içindeki sayıların büyüklüğüne göre sıralama yapılır.

 

KÖKLÜ İFADENİN EŞLENİĞİ

 

 

 


“MATEMATİK DERSİ İLE İLGİLİ KONU ANLATIMLAR” SAYFASINA GERİ DÖNMEK İÇİN

>>>TIKLAYIN<<<


“MATEMATİK DERSİ İLE İLGİLİ TEST SORULARI, SORU BANKASI” SAYFASINI GÖRMEK İSTERSENİZ

>>>TIKLAYIN<<<


“MATEMATİK DERSİ İLE İLGİLİ YAZILI SORULARI” SAYFASINI GÖRMEK İSTERSENİZ

>>>TIKLAYIN<<<

Bu Yazı İçin Yapılan Son "50+" Yorum Aşağıda Sıralanmaktadır.
Yorumlarınız Bize Yol Gösteriyor.
Yorumlar İçin Teşekkürler.

YORUM YAZ

....

52. **Yorum**
->Yorumu: Bir tane soru var 3 gundur cozemedim ya yardimci olrsaniz sevinirim
->Yazan: Adem....

51. **Yorum**
->Yorumu: Köklü sayılarda keşfedilmemiiş bi kural bulduğumu farkettim
->Yazan: Cem İŞGÖZ.
.....

50. **Yorum**
->Yorumu: Anlatılması gereken bu, Sade ve anlaşılır.
->Yazan: Bordo

49. **Yorum**
->Yorumu: Hepsi çok kolay bunların zor gelen varsa yuh derim. Prof olduğum için kolay gelmiş olabilir aslında. Of niye bu kadar zekiyim yaa 
->Yazan: prof

48. **Yorum**
->Yorumu: Allah razı olsun dayııııııııııııııııııııııııııııııııııııııııııııııııııııı 
->Yazan: serkan kartal

47. **Yorum**
->Yorumu: Allah razı olsun sağolsun odevimde yardımcı kaynak olgu
->Yazan: koray

46. **Yorum**
->Yorumu: projemi bitirdim sayenizde teşekür ederim 
->Yazan: emre görür........

45. **Yorum**
->Yorumu: Gerçekten site uzun ve kaliteli soruları yazılılara bire bir çok saolun emeği geçenlere telşekkür ederim... 
->Yazan: Mert Kaan Göktaş

44. **Yorum**
->Yorumu: Tesekkur ederim performans odevime yardim ettiniz kolay geldi valla 
->Yazan: eda

43. **Yorum**
->Yorumu: çok iyi bir site emeğimize sağlık 
->Yazan: sidar

42. **Yorum**
->Yorumu: Bunu yapan kişiye çok teşekkür bunun sayesinde projesi yaptım
->Yazan: abdurrahman

41. **Yorum**
->Yorumu: Emeği geçen herkese teşekkür ederim projemi sizin sayenizde bitirdim Allah razı olsun
->Yazan: Mertcan

40. **Yorum**
->Yorumu: Proje ödevime yardım oldu çoooooook teşekkürler
->Yazan: hülya..........

39. **Yorum**
->Yorumu: Proje ödevime yardım oldu çooooooooooook teşekkürler
->Yazan: melek

38. **Yorum**
->Yorumu: Çok teşekkür ederim,çok güzel anlatmışsınız...
->Yazan: elif

37. **Yorum**
->Yorumu: yeterince açıklayıcı olmuş tesekküurler 
->Yazan: bahar

36. **Yorum**
->Yorumu: gayet güzel özetlenmiş Allah razı olsun :)
->Yazan: 

35. **Yorum**
->Yorumu: çok güzel konu bana yardımcı oldu tşekürlerrrrrrr
->Yazan: fatma

34. **Yorum**
->Yorumu: cok sağolun sayenizde projemi bitirdim teşekkürler
->Yazan: sedat

33. **Yorum**
->Yorumu: çok güzel işe yarar bir site elinize emeğinize sağlık
->Yazan: özge

32. **Yorum**
->Yorumu: emeği gecenlerden allah razı olsun prpjemi yapmama yardimci oldunuz tesekkurler
->Yazan: mucahit.

31. **Yorum**
->Yorumu: Çook çook çook teşekkür ederim, ALLAH RAZI OLSUN proje ödevime yardımcı oldunuz.
->Yazan: Elanur.

30. **Yorum**
->Yorumu: bu site çok faydalı çok kolay bilgiler var teşekkür ederim 
->Yazan: şeyma.

29. **Yorum**
->Yorumu: ödevlerimize yardımcı oldunuz teşekürler Allah razı olsun
->Yazan: hilal.

28. **Yorum**
->Yorumu: Çook Saolun Güzel Bir Site.. Yardımcı oldu..
->Yazan: Burhan..

27. **Yorum**
->Yorumu: bu kare köklü sayılar kadar güzel bir şey varmı ya
->Yazan: yakup .

26. **Yorum**
->Yorumu: Allah razı olsun bana proje ödevimde çok yardımcı oldunuz sağ olunnnn :D
->Yazan: By_BaBaCLaSST.
->Yazan : bahar
->Yorumu: tesekkürler ama yinede 2. kademeye göre zor bir biçimde anlatilmis ama yinede güzel olmus.
->Yazan : copy-paste
->Yorumu: yorumlardan anlasilan, hoca vermis ödevi millet bakmis aynisini kagida geçirmis, ayip size (gerçekten anlamaya çalisanlar hariç) oturun da sunlarin ne oldugunu anlayin çözün sorulari..
->Yazan : Onur
->Yorumu: Cok Tesekkur ederim. Cok yardimci oldunuz bana proje ödevimde tesekkür ederim..
->Yazan : çilgin
->Yorumu: suanda matamatiki çoooook iyi anladim arkedeslerrr....
->Yazan : ahmet
->Yorumu: böyle güzel bi anlatim görmedim.
->Yazan : ESRA
->Yorumu: burdaki sorular benim çokkkkkkkkk isime yaradi yaaaa......
->Yazan : maas kaya
->Yorumu: bunlari okuduktan sonra dersi iyi daha anliyorum.
->Yazan : emine
->Yorumu: Matematigi anlamam,anlamakta istemem, bütün islemler içiçe giriyor ve deçikmak bilmiyor.Yinede yardimlariniz için TESEKÜRLER....
->Yazan : muhammet
->Yorumu: Çok sagolun sayenizde performansimi yaptim.
->Yazan : aysenur yilmaz
->Yorumu: çok güzel simdi köklü sayilari anladim.
->Yazan : sena
->Yorumu: çok tesekkür edrim bana çok yardimci oldu saolunb :).
->Yazan : mustafa
->Yorumu: tesekkür ederim walla sayenizde performans görevimi yaptim saolun.
>Yazan: merve
>Yorum: çok tesekür ederim çok güzel .
>Yazan: melek
>Yorum: begendim ama bu ilk kademelerin daha net , ama yine de begendim arkidesler :D .
>Yazan: Panpa
>Yorum: Tesekkürleeeeeeeer Projemi yaptiim panpalar :D .
>Yazan: JrRuzGaR
>Yorum: Turkan Niye Acik Ilkögretim Okuyorsun. Ilkögretim Ücretsizdir. .
>Yazan: KÜBRA
>Yorum: BEN MATEMATIGI HIÇ ANLAMIYORUM ÖGRETMEN BIZI HEP DÖVDÜGÜ IÇIN 8 .SINIFA GIDIYORUM GAZIPASA ILKÖGRETIM OKULUNA .
>Yazan: burak
>Yorum: çok tesekkürler sonunda buldum ALLAH razi olsun .
>Yazan: büsra
>Yorum: tesekür ederim çok yardimci oldu.
>Yazan: sema
>Yorum: tesekkürler güzel bir site sayenizde proje ödevimi yaptim.....
>Yazan: mehmet
>Yorum: Gerçekten güzel br site emeginize saglik.
>Yazan: türkan
>Yorum: maalesef ben hiç bir şey anlamadım ya açık ilköğretim okuyorum 8.sınıftayım anlayamıyorum bunları offff.
>Yazan: Mustafa
>Yorum: Allah razı olsun buldum sonunda Allah im şükürler olsun sizden de razı olsun.
>Yazan: melek
>Yorum: çooooooooooook süper bi şey bu teşekkürler.
>Yazan: Leyla
>Yorum: Çok güzel anlatmışsınız teşekkürler..

YORUM OKU

>>>YORUM YAZ<<<

Adınız:
Yorumunuz:


 




EĞİTİM ÖĞRETİM KONULARI Atasözleri Hikayeleri Özellikleri Belirli Gün ve Haftalar Çocuk Şarkıları - Şarkı Sözleri Hikayelerden Seçmeler İlginç Bilgiler Eğlenceli Bilgiler İllerimiz Ve İlçelerimiz Türkiye Kitap Özetleri Roman Özetleri Konu Anlatımlı Dersler Maniler Manilerden Seçmeler Masal Masallardan Seçmeler Meslek Tanıtımları Meslekler Rehberlik Köşesi Soru Bankası, Test Soruları Şiirler Seçme Güzel Şiirler Tekerleme Tekerlemeler Tiyatro Oyunları, Skeç, Piyes Türküler Türkü Sözleri Yazar Ve Şairlerin Hayatı Yazılı Soruları Arşivi ***Devamını Göster*** KONU ANLATIMLI DERSLER Beden Eğitimi Dersi Konu Anlatımı Bilgi Ve İletişim Teknolojileri Dersi Konu Anlatımı Biyoloji Dersi Konu Anlatımı Coğrafya Dersi Konu Anlatımı Din Kültürü Ve Ahlak Bilgisi Dersi Konu Anlatımı Edebiyat Dersi Konu Anlatımı Eğitim Bilimleri Dersi Konu Anlatımı Felsefe Dersi Konu Anlatımı Fen Bilimleri Dersi Konu Anlatımı Gelişim Ve Öğrenme Dersi Konu Anlatımı Hazreti Muhammed'in Hayatı Dersi Konu Anlatımı İngilizce Dersi Konu Anlatımı Matematik Dersi Konu Anlatımı Muhasebe Dersi Konu Anlatımı Sosyal Bilgiler Konu Anlatımı Tarih Dersi Konu Anlatımı Türkçe Dersi Konu Anlatımı Uluslar Arası İlişkiler Dersi Konu Anlatımı Vatandaşlık Anayasa İnsan Hakları Dersi Konu Anlatımı ***Devamını Göster*** YAZILI SORULARI YAZILILAR Biyoloji Yazılı Soruları Coğrafya Yazılı Soruları Dil Ve Anlatım Yazılı Soruları Din Kültürü Yazılı Soruları Edebiyat Yazılı Soruları Fen Bilimleri Yazılı Soruları Fizik Yazılı Soruları İngilizce Yazılı Soruları Kimya Yazılı Soruları İnkılap Tarihi Yazılı Soruları Matematik Yazılı Soruları Sosyal Bilgiler Yazılı Soruları Trafik Güvenliği Trafik Ve İlk Yardım Yazılı Soruları Türkçe Yazılı Soruları Vatandaşlık Ve Demokrasi Eğitimi Yazılı Soruları ***Devamını Göster*** SORU BANKASI TEST SORULARI Coğrafya Test Soruları Soru Bankası Din Kültürü Test Soruları Soru Bankası Edebiyat Test Soruları Soru Bankası Fen Bilimleri Test Soruları Soru Bankası İngilizce Test Soruları Soru Bankası İnkılap Tarihi Test Soruları Soru Bankası Matematik Test Soruları Soru Bankası Osmanlı Tarihi Test Soruları Soru Bankası Sosyal Bilgiler Test Soruları Soru Bankası Tarih Test Soruları Soru Bankası TC İnkılap Tarihi Test Soruları Soru Bankası Türkçe Test Soruları Soru Bankası Vatandaşlık Anayasa İnsan Hakları Test Soruları Soru Bankası ***Devamını Göster*** REHBERLİK KÖŞESİ Ders Çalışma Ödev Yapma İş Hayatı Başarısını Arttırma Kişisel Bedensel Gelişim Meslek Tanıtımları Okul Başarısını Arttırma Okuma Alışkanlığı Kazandırma Öğretmenlik Mesleği Sınavlara Hazırlanma Sinirini Engelle ***Devamını Göster*** HAYATIN İÇİNDEN BİLGİLER Cep Telefonu Mesajları İsimler Sözlüğü Pratik Bilgiler Yazıklar Olsun Zararları Sakıncaları ***Devamını Göster*** BİLGİSAYAR OYUNLARI Akıl Zeka Eğitici Oyunlar Araba Yarışı Oyunları Ateş Etme Hedef Vurma Oyunları Beceri Yetenek Oyunları Birleştirme Patlatma Oyunları Boyama Oyunları Dövüş Oyunları Futbol Oyunları Giysi Giydirme Oyunları Komik Eğlenceli Oyunlar Macera Oyunları Mario Oyunları Motosiklet Oyunları Savaş Oyunları Tasarlama Oyunları Yemek Yapma Oyunları ***Devamını Göster*** YEMEK TARİFLERİ MUTFAK Aperatifler Atıştırmalıklar Balık Yemekleri Tarifleri Tarifleri Börek Çörek Tarifleri Çorba Tarifleri Tarifleri Dolma Sarma Tarifleri Diyet Yemekleri Tarifleri Et Yemekleri Kebap Köfte Tarifleri Kek Tarifleri Komposto Tarifleri Kurabiye Tarifleri Pasta Tarifleri Pilav Tarifleri Reçel Tarifleri Salata Garnitür Tarifleri Sebze Yemeği Tarifleri Tatlı Turta Tart Tarifleri Tavuk Yemekleri Tarifleri ***Devamını Göster*** SAĞLIKLI YAŞAM REHBERİ Hastalıklar Çeşitleri Özellikleri Sağlık İçin Minik Notlar Sigaranın Zararları Sigarayı Bırakma Yolları Şifalı Bitkiler Listesi Şifalı Bitki Karışımları ***Devamını Göster***